Abstract

Insider threats pose a critical challenge for securing computer networks and systems. They are malicious activities by authorised users that can cause extensive damage, such as intellectual property theft, sabotage, sensitive data exposure, and web application attacks. Organisations are tasked with the duty of keeping their layers of network safe and preventing intrusions at any level. Recent advances in modern machine learning algorithms, such as deep learning and ensemble models, facilitate solving many challenging problems by learning latent patterns and modelling data. We used the Deep Feature Synthesis algorithm to derive behavioural features based on historical data. We generated 69,738 features for each user, then used PCA as a dimensionality reduction method and utilised advanced machine learning algorithms, both anomaly detection and classification models, to detect insider threats, achieving an accuracy of 91% for the anomaly detection model. The experimentation utilised a publicly available insider threat dataset called the CERT insider threats dataset. We tested the effect of the SMOTE balancing technique to reduce the effect of the imbalanced dataset, and the results show that it increases recall and accuracy at the expense of precision. The feature extraction process and the SVM model yield outstanding results among all other ML models, achieving an accuracy of 100% for the classification model.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call