Abstract

Post Hartree–Fock and density functional theory methods have been employed to study inside-protonated 1-azaadamantane 7 and its complexes with the fluoride counterion (contact ion pairs) 10 and 11. The study also involved 1-azaadamantane 4, its outside-protonated form 8, and 1-azaadamantane radical cation 17. Inside-protonated 1-azaadamantane 7 is more than 82 kcal mol−1less stable than out-isomer 8. The repulsive interaction between the internal N+–H group and the azaadamantane cage and a substantial deformation of this cage greatly weaken the C–N and C–C bonds and, consequently, lead to a low kinetic stability of in-ion 7 in the studied unimolecular and bimolecular reactions involving the removal of the encapsulated proton from the cage. Among these reactions, a 7 → 8 rearrangement through a reversible cage opening at the C–N bond was found to be the main transformation channel ([Formula: see text] < 16 kcal mol−1) for in-ion 7. This rearrangement can be catalyzed by an external base, e.g., the fluoride anion. A 1,4-hydrogen migration in 1-azaadamantane radical cation 17 as a possible pathway to the inside-protonated 1-azaadamantane 7 was explored. It was found that this process has a prohibitively high activation barrier, [Formula: see text] > 104 kcal mol−1, and is not able to compete with the α-C–C cleavage of the azaadamantane cage ([Formula: see text] < 26 kcal mol−1).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.