Abstract

The electron- and hole-trapping and optical properties of a wide variety of interfaces between MgO nanocrystallites are investigated for the first time using a quantum-mechanical embedded-cluster method and time-dependent density functional theory. We conclude that delocalized holes can be transiently trapped at a large number of places within a powder. However, it is more energetically favorable for holes to trap on low-coordinated anions on the nanocrystallite surface, forming O- species. Electrons are trapped at few interfaces but are readily trapped by surface kink and corner sites. Contrary to common perception, our calculations of optical absorption spectra indicate that a variety of features buried within a powder can be exited with photon energies less than 5 eV, usually used to selectively excite low-coordinated surface sites.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call