Abstract

AbstractMetacommunity theory is a convenient framework in which to investigate how local communities linked by dispersal influence patterns of species distribution and abundance across large spatial scales. For organisms with complex life cycles, such as mosquitoes, different pressures are expected to act on communities due to behavioral and ecological partitioning of life stages. Adult females select habitats for oviposition, and resulting offspring are confined to that habitat until reaching adult stages capable of flight; outside‐container effects (OCE) (i.e., spatial factors) are thus expected to act more strongly on species distributions as a function of adult dispersal capability, which should be limited by geographic distances between sites. However, larval community dynamics within a habitat are influenced by inside‐container effects (ICE), mainly interactions with conspecifics and heterospecifics (e.g., through effects of competition and predation). We used a field experiment in a mainland‐island scenario to assess whether environmental, spatial, and temporal factors influence mosquito prey and predator distributions and abundances across spatial scales: within‐site, between‐site, and mainland‐island. We also evaluated whether predator abundances inside containers play a stronger role in shaping mosquito prey community structure than do OCE (e.g., spatial and environmental factors). Temporal influence was more important for predators than for prey mosquito community structure, and the changes in prey mosquito species composition over time appear to be driven by changes in predator abundances. There was a negligible effect of spatial and environmental factors on mosquito community structure, and temporal effects on mosquito abundances and distributions appear to be driven by changes in abundance of the dominant predator, perhaps because ICE are stronger than OCE due to larval habitat restriction, or because adult dispersal is not limited at the chosen spatial scales.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.