Abstract

The genetic organization and interrelationships between the two ribosomal protein transcription units (the L11 and L10 operons) from near 89 min on the Escherichia coli chromosome were studied by using insertional mutations generated by the kanamycin-resistant transposable element Tn5. The polar effects of Tn5 insertions on the expression of the L11, L1, L10, and L12 ribosomal protein genes and the beta RNA polymerase subunit gene were examined (i) by the level of beta-galactosidase activity generated from L10-lacZ and beta-lacZ gene fusions, (ii) by direct sodium dodecyl sulfate-polyacrylamide gel electrophoresis of the proteins specified by plasmid ribosomal protein genes in UV-irradiated maxicells, and (iii) by urea-polyacrylamide gel electrophoresis of plasmid- and chromosome-specified L12 protein. The results confirmed the organization of these genes into two transcription units as follows: PL11, rplK (L11), rplA (L1), PL10, rplJ (L10), rplL (L12), rpoB (beta). . .; they also localized the position of the PL10 promoter within an 80-nucleotide region near the end of the L1 gene. The results also support the idea that the translational regulatory proteins for the L11 and L10 operons are L1 and L10, respectively, and that the expression of the L12 gene is closely linked to L10 gene expression.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.