Abstract

Several insertion sequences (IS) found in various Acinetobacter species exhibit target specificity. They are found, in the same orientation, 5 bp from the XerC binding site of the pdif sites associated with dif modules in Acinetobacter plasmids, and searches revealed they are also found near chromosomal dif sites of Acinetobacter species. These IS are 1.5 kb long, bounded by 24-26 bp imperfect terminal inverted repeats (TIRs) and encode a large transposase of 441-457 aa. They generate 5 bp target site duplications (TSDs). Structural predictions of the ISAjo2 transposase, TnpAjo2, modelled on TnsB of Tn7 revealed two N-terminal HTH domains followed by an RNaseH fold (DDE domain), a β barrel and a C-terminal domain. Similar to Tn7, the outer IS ends are 5'-TGT and ACA-3', and an additional Tnp binding site, corresponding to the internal portion of the IR, is found near each end. However, the Acinetobacter IS do not encode further proteins related to those required by Tn7 for targeted transposition, and the transposase may interact directly with XerC bound to a dif-like site. We propose that these IS, currently in the IS1202 group in the not characterized yet (NCY) category in ISFinder, are part of a distinct IS1202 family. Other IS listed as in the IS1202 group encode transposases related to TnpAjo2 (25-56 % amino acid identity) and have similar TIRs but fall into three groups based on the TSD length (3-5, >15, 0 bp). Those with 3-5 bp TSDs may also target dif-like sites but targets were not found for the other groups.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.