Abstract

ObjectivesInfections caused by carbapenem-resistant Klebsiella pneumoniae (CRKP) pose a huge health challenge worldwide. The aim of this study was to evaluate the incidence of polymyxin resistance in clinical CRKP isolates in China and to characterize the molecular mechanisms underlying these polymyxin-resistant CRKP (PR-CRKP) isolates. MethodsA total of 493 CRKP clinical isolates from patients were collected from six tertiary-care hospitals in China during 2017–2018. Minimum inhibitory concentrations of polymyxin B and colistin were determined using the broth microdilution method. PR-CRKP isolates were identified and subjected to whole-genome sequencing. Quantitative real-time PCR and structural modelling analysis were also performed. ResultsWe observed a 2.2% (11/493) polymyxin resistance rate in this multicentre cohort. Polymyxin B MICs ranged from 4 to 64 μg/mL and colistin MICs ranged from 8 to 128 μg/mL in 11 PR-CRKP isolates. Key genetic variations identified in PR-CRKP isolates involved eight disruptions (seven insertional inactivation by an insertion sequence [IS] element, one frameshift deletion) in mgrB, and three missense mutations in pmrA, pmrB, and phoP. ISKpn26 was the predominant IS (4/7), and three of these occurred in nucleotide position 74 in the mgrB gene. In addition, we reported a novel mutation S62R in pmrB that may confer polymyxin resistance in K. pneumoniae. ConclusionsOur findings highlight the multifaceted molecular mechanisms of polymyxin resistance in CRKP.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call