Abstract

BackgroundGenome analysis of three Frankia sp. strains has revealed a high number of transposable elements in two of the strains. Twelve out of the 20 major families of bacterial Insertion Sequence (IS) elements are represented in the 148 annotated transposases of Frankia strain HFPCcI3 (CcI3) comprising 3% of its total coding sequences (CDS). EAN1pec (EAN) has 183 transposase ORFs from 13 IS families comprising 2.2% of its CDS. Strain ACN14a (ACN) differs significantly from the other strains with only 33 transposase ORFs (0.5% of the total CDS) from 9 IS families.ResultsInsertion sequences in the Frankia genomes were analyzed using BLAST searches, PHYML phylogenies and the IRF (Inverted Repeat Finder) algorithms. To identify putative or decaying IS elements, a PSI-TBLASTN search was performed on all three genomes, identifying 36%, 39% and 12% additional putative transposase ORFs than originally annotated in strains CcI3, EAN and ACN, respectively. The distribution of transposase ORFs in each strain was then analysed using a sliding window, revealing significant clustering of elements in regions of the EAN and CcI3 genomes. Lastly the three genomes were aligned with the MAUVE multiple genome alignment tool, revealing several Large Chromosome Rearrangement (LCR) events; many of which correlate to transposase clusters.ConclusionAnalysis of transposase ORFs in Frankia sp. revealed low inter-strain diversity of transposases, suggesting that the majority of transposase proliferation occurred without recent horizontal transfer of novel mobile elements from outside the genus. Exceptions to this include representatives from the IS3 family in strain EAN and seven IS4 transposases in all three strains that have a lower G+C content, suggesting recent horizontal transfer. The clustering of transposase ORFs near LCRs revealed a tendency for IS elements to be associated with regions of chromosome instability in the three strains. The results of this study suggest that IS elements may help drive chromosome differences in different Frankia sp. strains as they have adapted to a variety of hosts and environments.

Highlights

  • Genome analysis of three Frankia sp. strains has revealed a high number of transposable elements in two of the strains

  • Classification of Insertion Sequence (IS) content A total of 364 IS-associated transposase open reading frames (ORFs) have been annotated among the three Frankia genomes

  • Frankia alni strain ACN has 33, Frankia sp. strain CcI3 has 148 and Frankia sp. strain EAN has 183 ORFs distributed among 13 IS families plus several unclassified transposases (Table 1 and [5])

Read more

Summary

Introduction

Genome analysis of three Frankia sp. strains has revealed a high number of transposable elements in two of the strains. Twelve out of the 20 major families of bacterial Insertion Sequence (IS) elements are represented in the 148 annotated transposases of Frankia strain HFPCcI3 (CcI3) comprising 3% of its total coding sequences (CDS). Strain ACN14a (ACN) differs significantly from the other strains with only 33 transposase ORFs (0.5% of the total CDS) from 9 IS families. Despite having 16S rRNA sequences that are greater than 97% identical to each other, the strains have genome sizes that range from five to nine Mbp in size. Their genome sizes reflect the diversity of plants infected [5]. Strain ACN14a (ACN) has a moderate genome size (7.4 Mbp) and infects plants from two families [1]

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call