Abstract

Alzheimer's disease (AD) is the result of abnormal processing of the amyloid precursor protein (APP) by β-secretase and γ-secretase, which leads to the formation of toxic β-amyloid peptides. The toxic β-amyloid peptides induce neuron death, memory problems, and AD development. Several APP mutations increase the risk of developing early-onset AD. However, the A673T mutation identified in the Icelandic population prevents AD development by reducing the cleavage of APP by β-secretase. In this study, we inserted the A673T mutation in human cells using the CRISPR prime editing (PE) technique. Repeated PE treatments resulted in the insertion of the A673T mutation in up to 49.2% of APP genes when a second nick was induced in the other DNA strand. When the protospacer adjacent motif used for PE was also mutated, up to 68.9% of the APP genes contained the protective A673T mutation. PE is a promising approach to introduce the A673T mutation precisely without mutating nearby nucleotides.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.