Abstract

Reduced Nickel porphyrins play an important role as enzymatic cofactors in the global carbon cycle (cofactor F430), and as powerful catalysts in solar-to-fuel-processes such as the hydrogen evolution reaction, and the reduction of CO and CO2. The preparation of Ni(II)porphyrins requires harsh conditions, and characterization of the reduced species is intricate. We present a very mild, convenient, and high yielding method of inserting Ni into electron rich, and electron deficient porphyrins which at the same time gives access to to Ni(II) phlorins and Ni(II)chlorins and Ni(II)porphyrins.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.