Abstract

The cofactors of Mo-, V-, Fe-dependent nitrogenases are believed to be highly homologous in structure despite the different types of heterometals (Mo, V, and Fe) they contain. Previously, a precursor form of the FeMo cofactor (FeMoco) was captured on NifEN, a scaffold protein for FeMoco biosynthesis. This all-Fe precursor closely resembles the Fe/S core structure of the FeMoco and, therefore, could reasonably serve as a precursor for all nitrogenase cofactors. Here, we report the heterologous incorporation of V and Fe into the NifEN-associated FeMoco precursor. EPR and activity analyses indicate that V and Fe can be inserted at much reduced efficiencies compared with Mo, and incorporation of both V and Fe is enhanced in the presence of homocitrate. Further, native polyacrylamide gel electrophoresis experiments suggest that NifEN undergoes a significant conformational rearrangement upon metal insertion, which allows the subsequent NifEN–MoFe protein interactions and the transfer of the cofactor between the two proteins. The combined outcome of these in vitro studies leads to the proposal of a selective mechanism that is utilized in vivo to maintain the specificity of heterometals in nitrogenase cofactors, which is likely accomplished through the redox regulation of metal mobilization by different Fe proteins (encoded by nifH, vnfH, and anfH, respectively), as well as the differential interactions between these Fe proteins and their respective scaffold proteins (NifEN and VnfEN) in the Mo-, V-, and Fe-dependent nitrogenase systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.