Abstract
Porcine astrovirus (PAstV) is a common cause of diarrhea in swine farms. The current understanding of the molecular virology and pathogenesis of PAstV is incomplete, especially due to the limited functional tools available. Here, ten sites in the open reading frame 1b (ORF1b) of the PAstV genome were determined to tolerate random 15 nt insertions based on the infectious full-length cDNA clones of PAstV using transposon-based insertion-mediated mutagenesis of three selected regions of the PAstV genome. Insertion of the commonly used Flag tag into seven of the ten insertion sites allowed the production of infectious viruses and allowed their recognition by specifically labeled monoclonal antibodies. Indirect immunofluorescence showed that the Flag-tagged ORF1b protein partially overlapped with the coat protein within the cytoplasm. An improved light-oxygen-voltage (iLOV) gene was also introduced into these seven sites, and only one viable recombinant virus that expressed the iLOV reporter gene at the B2 site was recovered. Biological analysis of the reporter viruses showed that these exhibited similar growth characteristics to the parental virus, but they produced fewer infectious virus particles and replicated at a slower rate. The recombinant viruses containing iLOV fused to ORF1b protein, which maintained their stability and displayed green fluorescence for up to three generations after passaging in cell culture. The porcine astroviruses (PAstVs) expressing iLOV were then used to assess the in vitro antiviral activities of mefloquine hydrochloride and ribavirin. Altogether, the recombinant PAstVs expressing iLOV can be used as a reporter virus tool for the screening of anti-PAstV drugs as well as the investigation of PAstV replication and the functional activities of proteins in living cells.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.