Abstract

Nonbiodegradable (co)polymers with all-carbon backbone produced via radical polymerization are used in various applications. For some applications, like for example in skincare and haircare, these polymers are nonrecoverable and therefore would be preferably made biodegradable. Therefore, inserting ester bonds in the backbone via radical ring opening terpolymerization of acrylates and 2-methylene-1,3 dioxepane (MDO) could be a suitable approach to obtain biodegradable terpolymers. This report investigates the influence of batch versus semibatch process on the polymerization of three terpolymerization systems viz. (i) methacrylamide (MAAM)/n-butyl acrylate (nBA)/BMDO (5,6-Benzo-2-Methylene-1,3-Dioxepane), (ii) MAAM/nBA/MDO, and (iii) methyl methacrylate (MMA)/VAc (vinyl acetate) /MDO. We demonstrate the improvement in number of ester groups inserted and the homogeneity of insertion via semibatch polymerization processes. The process is guided via optimal monomer addition feeding profiles generated using the reactivity ratios of comonomers. Such improved insertion was demonstrated by the molecular weight distribution of fragments after alkali degradation in the investigated systems.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call