Abstract

The catalyst morphology has a strong impact on the activity of electrocatalytic hydrogen production. Considering the effect, we design and fabricate hollow spherical Ni/MoO2 heterojunction. In addition, an amorphous carbon skeleton is inserted into the hollow sphere, which makes the structure more stable and porous. Compared with other morphological Ni/MoO2, the porous hollow spherical Ni/MoO2 (H-Ni/MoO2) with an internal carbon skeleton shows better hydrogen evolution reaction (HER) activity with a small overpotential of 58 mV to reach 10 mA cm−2 and a tafel value of 44.8 mV dec-1 in alkaline media. The developed HER performance of H-Ni/MoO2 can be attributed to the larger active surface area of porous hollow spherical structure and the faster electron transfer and better stability of carbon skeleton. Undoubtedly, the urea plays a crucial role to construct the hollow spherical morphology and being decomposed to form holes and amorphous carbon in the synthesized steps. The soft-template strategy using urea as the addition for forming the porous hollow structure with carbon skeleton can be extended to explore superior non-noble metal for hydrogen production.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call