Abstract

Lung cancer currently causes the majority of cancer-related deaths worldwide and new treatments are in high demand. Gene therapy could be a promising treatment but currently lacks sufficient efficiency for clinical use, primarily due to limited cellular and nuclear DNA delivery. In the present study, we investigated whether it was possible to exploit the endogenous nuclear-shuttling activity by the nuclear factor kappa B (NFκB) system, which is highly prominent in many cancers as well as lung cancer. We observed that insertion of a DNA nuclear-targeting sequence (DTS) recognized by NFκB could improve plasmid nuclear delivery and enhance the therapeutic effect of a validated transcriptionally cancer-targeted suicide gene therapy system. A clear correlation between the number of inserted NFκB-binding sites and the therapeutic effect of the suicide system was observed in both small cell lung cancer (SCLC) and non-SCLC cell lines. The effect was observed to be due to elevated nuclear translocation of the suicide gene-encoding plasmids. The results show that a significant improvement of gene therapeutic efficiency can be obtained by increasing the intracellular trafficking of therapeutic DNA. This is to our knowledge the first time a DTS strategy has been implemented for suicide gene therapy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.