Abstract
Titanium dioxide (TiO2) has been proposed as a potential electrode material for lithium, sodium, and magnesium ion batteries. Among the phases of TiO2, anatase, rutile, and (B)–TiO2 are the most commonly used phases for electrochemical storage, while the amorphous phase has also been shown to be a promising candidate. We present a comparative density functional theory study of the insertion energetics of Li, Na, and Mg into anatase, rutile, and (B)–TiO2, as well as into the amorphous phase. Our results show that among the crystalline phases, (B)–TiO2 provides the strongest binding between TiO2 and the inserted Li/Na/Mg atom. We also find that for all Li, Na, and Mg, the amorphous phase provides insertion sites well-dispersed in energies, with a lowest energy site more thermodynamically favorable than insertion sites in the crystalline phases. We also obtain the localized Ti3+ states together with the formation of the defect states in the band gap, which are induced by the insertion, at the GGA level of theory (without the Hubbard correction).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.