Abstract

A growing body of evidence has proved that the expression of COL1A2 is associated with a reduced risk of osteoporotic fracture. One single-nucleotide polymorphism (rs3917) located within the 3'-untranslated region of COL1A2 may "alter" binding site of miR-382 and thereby associated with the risk of osteoporotic fracture. Bioinformatic analysis, luciferase reporter assay, site-directed mutagenesis, Western blot and real-time PCR were performed in this study. In this study, we validated COL1A2 as a target of miR-382 in osteoblast. In addition, bone tissue samples were genotyped as wild-type rs3917, heterozygous rs3917, and homozygous rs3917. The expression of miR-382 was comparable between the genotype groups, whereas the expression of COL1A2 mRNA and protein was much higher in heterozygous rs3917 and homozygous rs3917 than the wild-type rs3917 group. Furthermore, we transfected the wild-type rs3917 and heterozygous rs3917 cells with miR-382 mimics or inhibitors and found that the transfection with miR-382 mimics significantly increased the level of the miR-382 in the cells of both genotypes, and the introduction of miR-382 inhibitors substantially suppressed the level of miR-382 in both cells. In wild-type rs3917 cells, transfection of miR-382 mimics and COL1A2 small interfering RNA (siRNA) similarly and substantially downregulated the expression of COL1A2, while in heterozygous rs3917 cells, only COL1A2 siRNA notably reduced the expression of COL1A2, whereas introduction of miR-382 mimics left expression of COL1A2 intact. The findings showed rs3917 polymorphism interfered with the interaction between COL1A2 mRNA and miR-382, and minor allele is associated with a reduced risk of osteoporotic fracture.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.