Abstract

Rigorous quantum dynamical calculations have been performed on the ground 1 1A' and first excited 1 1A" electronic states of the title reaction, employing the most accurate potential energy surfaces available. Product rovibrational quantum state populations and rotational angular momentum alignment parameters are reported, and are compared with new experimental, and quasiclassical trajectory calculated results. The quantum calculations agree quantitatively with experiment, and reveal unequivocally that the 1 1A" excited state participates in the reaction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call