Abstract
Description of periodically and resonantly driven quantum systems can lead to solid state models where condensed matter phenomena can be investigated in time lattices formed by periodically evolving Wannier-like states. Here, we show that inseparable two-dimensional time lattices with the Möbius strip geometry can be realized for ultracold atoms bouncing between two periodically oscillating mirrors. Effective interactions between atoms loaded to a lattice can be long-ranged and can be controlled experimentally. As a specific example, we show how to realize a Lieb lattice model with a flat band and how to control long-range hopping of pairs of atoms in the model.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.