Abstract

Detection and recognition of latent fingerprints play crucial roles in identification and security. However, the separation of sensor, memory, and processor in conventional ex-situ fingerprint recognition system seriously deteriorates the latency of decision-making and inevitably increases the overall computing power. In this work, a photoelectronic reservoir computing (RC) system, consisting of DUV photo-synapses and nonvolatile memristor array, is developed to detect and recognize the latent fingerprint with in-sensor and parallel in-memory computing. Through the Ga-rich design, we achieve amorphous GaOx (a-GaOx) photo-synapses with an enhanced persistent photoconductivity (PPC) effect. The PPC effect, which induces nonlinearly tunable conductivity, renders the a-GaOx photo-synapses an ideal deep ultraviolet (DUV) photoelectronic reservoir, thus mapping the complex input vector into a dimensionality-reduced output vector. Connecting the reservoirs and a memristor array, we further construct an in-sensor RC system for latent fingerprint identification. The system maintains over 90% recognition accuracy for latent fingerprint within 15% stochastic noise level via the proposed dual-feature strategy. This work provides a subversive prototype system of DUV in-sensor RC for highly efficient recognition of latent fingerprints.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.