Abstract

In this paper, we deal with the existence of insensitizing controls for the Navier–Stokes equations in a bounded domain with Dirichlet boundary conditions. We prove that there exist controls insensitizing the L2-norm of the observation of the solution in an open subset O of the domain, under suitable assumptions on the data. This problem is equivalent to an exact controllability result for a cascade system. First we prove a global Carleman inequality for the linearized Navier–Stokes system with right-hand side, which leads to the null controllability at any time T>0. Then, we deduce a local null controllability result for the cascade system.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.