Abstract

In this study, the security implications of utilizing the concept of entanglement in time in the quantum representation of a blockchain data structure are investigated. The analysis reveals that the fundamental idea underlying this representation relies on an uncertain interpretation of experimental results. A different perspective is provided by adopting the Copenhagen interpretation, which explains the observed correlations in the experiment without invoking the concept of entanglement in time. According to this interpretation, the qubits responsible for these correlations are not entangled, posing a challenge to the security foundation of the data structure. The study incorporates theoretical analysis, numerical simulations, and experiments using real quantum hardware. By employing a dedicated circuit for detecting genuine entanglement, the existence of entanglement in the process of generating a quantum blockchain is conclusively excluded.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call