Abstract

A protein-based lubricating substance is discovered in the femoro-tibial joint of the darkling beetle Zophobas morio (Insecta). The substance extrudes to the contacting areas within the joint and appears in a form of filiform flows and short cylindrical fragments. The extruded lubricating substance effectively reduces the coefficient of sliding friction to the value of 0.13 in the tribosystem glass/lubricant/glass. This value is significantly lower than 0.35 in the control tribosystem glass/glass and comparable to the value of 0.14 for the tribosystem glass/dry PTFE (polytetrafluoroethylene or Teflon). The study shows for the first time that the friction-reducing mechanism found in Z. morio femoro-tibial joints is based on the lubricant spreading over the contacting surfaces rolling or moving at low loads and deforming at higher loads, preventing direct contact of joint counterparts. Besides Z. morio, the lubricant has been found in the leg joints of the Argentinian wood roach Blaptica dubia.

Highlights

  • Lubrication is known as one of the strategies for friction minimization and wear control [1]

  • The study shows for the first time that the friction-reducing mechanism found in Z. morio femoro-tibial joints is based on the lubricant spreading over the contacting surfaces rolling or moving at low loads and deforming at higher loads, preventing direct contact of joint counterparts

  • Besides Z. morio, the lubricant has been found in the leg joints of the Argentinian wood roach Blaptica dubia

Read more

Summary

Insects use lubricants to minimize friction and wear in leg joints

A protein-based lubricating substance is discovered in the femoro-tibial joint of the darkling beetle Zophobas morio (Insecta). The extruded lubricating substance effectively reduces the coefficient of sliding friction to the value of 0.13 in the tribosystem glass/lubricant/glass. This value is significantly lower than 0.35 in the control tribosystem glass/glass and comparable to the value of 0.14 for the tribosystem glass/dry PTFE ( polytetrafluoroethylene or Teflon). The study shows for the first time that the friction-reducing mechanism found in Z. morio femoro-tibial joints is based on the lubricant spreading over the contacting surfaces rolling or moving at low loads and deforming at higher loads, preventing direct contact of joint counterparts. Besides Z. morio, the lubricant has been found in the leg joints of the Argentinian wood roach Blaptica dubia

Introduction
Results
Discussion
Friction properties of the head articulation in the
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call