Abstract

AbstractEach year there are multiple reports of drift occurrences, and the majority of drift complaints in rice are from imazethapyr or glyphosate. In 2014 and 2015, multiple field experiments were conducted near Stuttgart, AR, and near Lonoke, AR, to evaluate whether insecticide seed treatments would reduce injury from glyphosate or imazethapyr drift or decrease the recovery time following exposure to a low rate of these herbicides. Study I was referred to as the “seed treatment study,” and Study II was the “drift timing study.” In the seed treatment study the conventional rice cultivar ‘Roy J’ was planted, and herbicide treatments included imazethapyr at 10.5 g ai ha–1, glyphosate at 126 g ae ha–1, or no herbicide. Each plot had either a seed treatment of thiamethoxam, clothianidin, chlorantraniliprole, or no insecticide seed treatment. The herbicides were applied at the two- to three-leaf growth stage. Crop injury was assessed 1, 3, and 5 wk after application. Averaged over site-years, thiamethoxam-treated rice had less injury than rice with no insecticide seed treatment at each rating, along with an increased yield. Clothianidin-treated rice had an increased yield over no insecticide seed treatment, but the reduction in injury for both herbicides was less pronounced than in the thiamethoxam-treated plots. Overall, chlorantraniliprole was generally the least effective of the three insecticides in reducing injury from either herbicide and in protecting rice yield potential. A second experiment conducted at Stuttgart, AR, was meant to determine whether damage to rice from glyphosate and imazethapyr was influenced by the timing (15, 30, and 45 d after planting) of exposure to herbicides for thiamethoxam-treated and nontreated rice. There was an overall reduction in injury with the use of thiamethoxam, but the reduction in injury was not dependent on the timing of the drift event. Reduction in damage from physical drift of glyphosate and imazethapyr as well as increased yields over the absence of an insecticide seed treatment appear to be an added benefit.

Highlights

  • Conventional rice is often grown in close proximity to glyphosate-resistant soybean [Glycine max (L.) Merr.] and imidazolinone-resistant rice in Midsouth cropping systems

  • Rice water weevil numbers had a significant interaction between seed treatment and herbicide

  • Averaged over the glyphosate and imazethapyr herbicide treatments, plants in all insecticide seed treatment plots had at least 18% injury 1 wk after the herbicide treatment (WAT), but injury was less for all insecticide seed treatments than that observed in plots without an insecticide seed treatment (Table 5)

Read more

Summary

Introduction

Conventional rice is often grown in close proximity to glyphosate-resistant soybean [Glycine max (L.) Merr.] and imidazolinone-resistant rice in Midsouth cropping systems. This policy––along with poor herbicide application techniques, especially of glyphosate and imazethapyr ––can lead to off-target movement of herbicides onto conventional rice. Depending on rice growth stage, concentration, and herbicide, injury can range from barely noticeable to complete necrosis and plant death (Ellis et al 2003; Kurtz and Street 2003). Glyphosate is a nonselective systemic herbicide that causes chlorosis followed by necrosis that eventually leads to plant death. Since the introduction of glyphosate-resistant crops in 1996, glyphosate has been primarily used as a POST-applied herbicide to control a wide

Objectives
Methods
Results
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call