Abstract

BackgroundThe rapid spread of insecticide resistance in malaria vectors and the rebound in malaria cases observed recently in some endemic areas underscore the urgent need to evaluate and deploy new effective control interventions. A randomized control trial (RCT) was conducted with the aim to investigate the benefit of deploying complementary strategies, including indoor residual spraying (IRS) with pirimiphos-methyl in addition to long-lasting insecticidal nets (LLINs) in Diébougou, southwest Burkina Faso.MethodsWe measured the susceptibility of the Anopheles gambiae (s.l.) population from Diébougou to conventional insecticides. We further monitored the efficacy and residual activity of pirimiphos-methyl on both cement and mud walls using a laboratory susceptible strain (Kisumu) and the local An. gambiae (s.l.) population.ResultsAn. gambiae (s.l.) from Diébougou was resistant to DDT, pyrethroids (deltamethrin, permethrin and alphacypermethrin) and bendiocarb but showed susceptibility to organophosphates (pirimiphos-methyl and chlorpyrimiphos-methyl). A mixed-effect generalized linear model predicted that pirimiphos-methyl applied on cement or mud walls was effective for 210 days against the laboratory susceptible strain and 247 days against the local population. The residual efficacy of pirimiphos-methyl against the local population on walls made of mud was similar to that of cement (OR = 0.792, [0.55–1.12], Tukey’s test p-value = 0.19).ConclusionsIf data on malaria transmission and malaria cases (as measured trough the RCT) are consistent with data on residual activity of pirimiphos-methyl regardless of the type of wall, one round of IRS with pirimiphos-methyl would have the potential to control malaria in a context of multi-resistant An. gambiae (s.l.) for at least 7 months.Graphical

Highlights

  • The rapid spread of insecticide resistance in malaria vectors and the rebound in malaria cases observed recently in some endemic areas underscore the urgent need to evaluate and deploy new effective control interventions

  • Insecticide susceptibility bioassays The An. gambiae (s.l.) population from Diébougou was highly resistant to DDT and pyrethroids, with mortality rates < 15%, as recorded in World Health Organization (WHO) susceptibility bio-assays (Fig. 2)

  • Mortality rate of the susceptible An. gambiae (s.s.) Kisumu mosquitoes for all the insecticides tested was 100%

Read more

Summary

Introduction

The rapid spread of insecticide resistance in malaria vectors and the rebound in malaria cases observed recently in some endemic areas underscore the urgent need to evaluate and deploy new effective control interventions. Long Lasting Insecticidal mosquito Nets (LLINs) and indoor residual spraying (IRS) are major malaria vector control strategies [1]. Both strategies have had substantial impacts on the malaria burden over the. Interest in combining IRS with LLIN seems to have increased in recent years across Africa because of the raise of pyrethroids resistance within the main major malaria vectors [6]. As of 2017, the arsenal of insecticides recommended for IRS has been improved considerably, making available five classes of insecticides including organochlorines, carbamates, organophosphates, pyrethroids and neonicotinoids [7, 8]. Options available for continued insecticide rotation are very limited in many endemic countries because resistance to multiple insecticide classes is very common in vector populations. Resistance to organophosphate was less common, with 14.1% of the sites tested in Africa confirming its occurrence [6]

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call