Abstract

BackgroundThis study aims to provide baseline data on the resistance status to insecticides, the frequency of mechanisms involved and the impact of the association with the synergist piperonyl butoxide (PBO) on resistant Anopheles gambiae (s.l.) populations in two regions of northern Benin, prior to an indoor residual spraying campaign and introduction of next generation long-lasting insecticidal nets (LLINs) incorporating PBO.MethodsAdult Anopheles gambiae (s.l.) originating from larvae collected in two study regions (Alibori within the Kandi-Gogounou-Segbana districts and Donga within the Djougou-Copargo-Ouake districts) were tested with impregnated papers (bendiocarb 0.1%, pirimiphos-methyl 0.25%, permethrin 0.75% and deltamethrin 0.05%). The synergist PBO was used to check for the involvement of detoxification enzymes in pyrethroid resistant populations. Molecular analyses were performed for the identification of species within the Anopheles gambiae (s.l.) complex and kdr L1014F and G119S Ace-1 mutations. Biochemical assays assessed the activity of detoxification enzymes.ResultsAnopheles gambiae (s.l.) was resistant to pyrethroids, with a mortality range of 25–83% with deltamethrin and 6–55% with permethrin. A significant increase in mortality was observed after pre-exposure to PBO for both deltamethrin (63–99%) and permethrin (56–99%). With bendiocarb, An. gambiae (s.l.) were susceptible in Kandi (99% mortality), with possible resistance (92–95%) recorded in Djougou, Copargo, Gogounou, Ouake and Segbana. All study populations were fully susceptible to pirimiphos-methyl. The frequencies of resistant mutations varied according to species and sites: 0.67–0.88 for L1014F kdr and 0–0.06 for G119S Ace-1. Three study locations (Djougou, Gogounou and Kandi) showed high oxidase activity and four sites (Djougou, Ouake, Copargo and Kandi) showed elevated esterase activity.ConclusionsThis study confirms resistance to pyrethroids and suggests emerging bendiocarb resistance in An. gambiae (s.l.) populations in northern Benin. However, recovery of susceptibility to pyrethroids after PBO exposure, and susceptibility to organophosphates in the An. gambiae (s.l.) populations indicate that next generation LLINs incorporating PBO synergist combined with an indoor residual spraying (IRS) campaign with organophosphate insecticides may be regarded as alternative control tools.

Highlights

  • This study aims to provide baseline data on the resistance status to insecticides, the frequency of mechanisms involved and the impact of the association with the synergist piperonyl butoxide (PBO) on resistant Anopheles gambiae (s.l.) populations in two regions of northern Benin, prior to an indoor residual spraying campaign and introduction of generation long-lasting insecticidal nets (LLINs) incorporating PBO

  • Recovery of susceptibility to pyrethroids after PBO exposure, and susceptibility to organophosphates in the An. gambiae (s.l.) populations indicate that generation LLINs incorporating PBO synergist combined with an indoor residual spraying (IRS) campaign with organophosphate insecticides may be regarded as alternative control tools

  • The main insecticide resistance mechanisms involve an increase in the activity of detoxification enzymes [18, 19, 27, 28] and the kdr L1014F and G119S Ace-1 target site mutations frequently found in An. gambiae (s.l.) populations [16, 29,30,31]

Read more

Summary

Introduction

This study aims to provide baseline data on the resistance status to insecticides, the frequency of mechanisms involved and the impact of the association with the synergist piperonyl butoxide (PBO) on resistant Anopheles gambiae (s.l.) populations in two regions of northern Benin, prior to an indoor residual spraying campaign and introduction of generation long-lasting insecticidal nets (LLINs) incorporating PBO. In preparation for the implementation of these two control campaigns, the present study was initiated to collect data on the resistance of vectors to insecticides in the two targeted regions. These baseline data inform selection of insecticide candidates for IRS and help to define strategies for effective insecticide resistance management in the study area

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call