Abstract

A colony of Anopheles arabiensis Patton (Diptera: Culicidae) from the Sennar region of Sudan was selected for resistance to dichlorodiphenyltrichloroethane (DDT). Adults from the F-16 generation of the resistant strain were exposed to all four classes of insecticides approved for use in malaria vector control and showed high levels of resistance to them all (24-h mortalities: malathion, 16.7%; bendiocarb, 33.3%; DDT, 12.1%; dieldrin, 0%; deltamethrin, 24.0%; permethrin, 0%). Comparisons between the unselected base colony and the DDT-resistant strain showed elevated glutathione-S-transferase (P<0.05) in both sexes and elevated esterases (P<0.05) in males only. The Leu-Phe mutation in the sodium channel gene was detected by polymerase chain reaction and sequencing, but showed no correlation with the resistant phenotype. These results do not provide any explanation as to why this colony exhibits such widespread resistance and further studies are needed to determine the precise mechanisms involved. The implications for malaria vector control in central Sudan are serious and resistance management (e.g. through the rotational use of different classes of insecticides) is recommended.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.