Abstract

BackgroundIndoor residual spraying (IRS) and long-lasting insecticidal nets (LLINs) remain the cornerstones of malaria vector control. However, the development of insecticide resistance and its implications for operational failure of preventative strategies are of concern. The aim of this study was to characterize insecticide resistance among Anopheles arabiensis populations in Ethiopia and describe temporal and spatial patterns of resistance between 2012 and 2016.MethodsBetween 2012 and 2016, resistance status of An. arabiensis was assessed annually during the long rainy seasons in study sites from seven of the nine regions in Ethiopia. Insecticide resistance levels were measured with WHO susceptibility tests and CDC bottle bioassays using insecticides from four chemical classes (organochlorines, pyrethroids, organophosphates and carbamates), with minor variations in insecticides tested and assays conducted between years. In selected sites, CDC synergist assays were performed by pre-exposing mosquitoes to piperonyl butoxide (PBO). In 2015 and 2016, mosquitoes from DDT and deltamethrin bioassays were randomly selected, identified to species-level and screened for knockdown resistance (kdr) by PCR.ResultsIntense resistance to DDT and pyrethroids was pervasive across Ethiopia, consistent with historic use of DDT for IRS and concomitant increases in insecticide-treated net coverage over the last 15 years. Longitudinal resistance trends to malathion, bendiocarb, propoxur and pirimiphos-methyl corresponded to shifts in the national insecticide policy. By 2016, resistance to the latter two insecticides had emerged, with the potential to jeopardize future long-term effectiveness of vector control activities in these areas. Between 2015 and 2016, the West African (L1014F) kdr allele was detected in 74.1% (n = 686/926) of specimens, with frequencies ranging from 31 to 100% and 33 to 100% in survivors from DDT and deltamethrin bioassays, respectively. Restoration of mosquito susceptibility, following pre-exposure to PBO, along with a lack of association between kdr allele frequency and An. arabiensis mortality rate, both indicate metabolic and target-site mutation mechanisms are contributing to insecticide resistance.ConclusionsData generated by this study will strengthen the National Malaria Control Programme’s insecticide resistance management strategy to safeguard continued efficacy of IRS and other malaria control methods in Ethiopia.

Highlights

  • Indoor residual spraying (IRS) and long-lasting insecticidal nets (LLINs) remain the cornerstones of malaria vector control

  • Data generated by this study will strengthen the National Malaria Control Programme’s insecticide resistance management strategy to safeguard continued efficacy of IRS and other malaria control methods in Ethiopia

  • The West African kdr (L1014F) mutation has been reported in An. arabiensis populations at high frequencies [9, 14, 15] and preexposure of An. arabiensis to piperonyl butoxide (PBO) significantly increased vector susceptibility to deltamethrin and permethrin [12], suggesting both metabolic and target-site mutation mechanisms are responsible for insecticide resistance

Read more

Summary

Introduction

Indoor residual spraying (IRS) and long-lasting insecticidal nets (LLINs) remain the cornerstones of malaria vector control. As part of the National Malaria Strategic Plan (2014–2020), vector control by the National Malaria Control Programme (NMCP), with support from the President’s Malaria Initiative (PMI) and the Global Fund, is based on indoor residual spraying (IRS) and universal coverage campaigns of long-lasting insecticidal nets (LLINs) [1,2,3,4]. In Ethiopia, An. arabiensis has developed resistance against insecticides belonging to all four chemical classes approved for IRS, including DDT (organochlorine), malathion (organophosphate), bendiocarb and propoxur (carbamates) and alpha-cypermethrin, cyfluthrin, deltamethrin, etofenprox, lambda-cyhalothrin and permethrin (pyrethroids) [5,6,7,8,9,10,11,12,13,14]. In 2015, in response to incipient resistance, PMI-supported IRS activities were based on bendiocarb in 28 districts (and focal pirimiphosmethyl application in 8 districts) and in 2016, pirimiphosmethyl replaced bendiocarb in all PMI-supported districts [2] (Fig. 1 and Additional file 1: Table S1)

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call