Abstract

Fipronil, malathion, and permethrin are widely used insecticides in agriculture, public areas, and residential spaces. The globally abused application of these chemicals results in residues surpassing established maximum residue levels, giving rise to potential toxicity in unintended organisms. Long-term exposure and the persistent accumulation of these insecticides in animals and humans pose threats such as neurotoxicity, liver and kidney damage, and microbiota dysbiosis. Despite the known risks, the specific impact of these insecticides on gut microbiota and their metabolic processes, as well as the subsequent effects on host health, remain largely unknown. This study aimed to address this gap by utilizing nonpathogenic Escherichia coli as a representative of human gut bacteria and examining its growth and metabolic perturbations induced by exposure to fipronil, malathion, and permethrin. Our research showed that exposure of E. coli to fipronil, malathion, and permethrin at physiologically relevant concentrations resulted in significant growth inhibition. Furthermore, we have observed the biodegradation of fipronil and permethrin by E. coli, while no biodegradation was found for malathion. Thus, E. coli is capable of degrading fipronil and permethrin, thereby enabling the removal of those substances. Next, we studied how insecticides affect bacterial metabolism to understand their influence on the functions of the microbes. Our metabolomics analysis revealed chemical-dependent alterations in metabolic profiles and metabolite compositions following insecticide exposure. These changes encompassed shifts in carboxylic acids and derivatives, organooxygen compounds, as well as indoles and their derivatives. To gain a deeper insight into the systematic changes induced by these insecticides, we conducted a metabolic pathway analysis. Our data indicated that fipronil, compared with malathion and permethrin, exhibited opposite regulation in glycine, serine, and threonine metabolism and valine, leucine, and isoleucine biosynthesis. In summary, our study demonstrates the capability of E. coli to degrade fipronil and permethrin, leading to their removal, while malathion remains unaffected. Additionally, we reveal chemical-dependent alterations in bacterial metabolism induced by insecticide exposure, with specific impacts on metabolic pathways, particularly in pathways related to amino acid metabolism.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.