Abstract
Drosophila suzukii causes considerable economic damage to small and thin-skinned fruits including cherry, blueberry, raspberry, grape and strawberry. Since it attacks fruits at the ripening stage, the use of chemical pesticides is limited due to the high risk of residues on fruit. Biological control is thus expected to play an essential role in managing this pest. The Gram-negative bacterium, Photorhabdus luminescens and its symbiotic Heterorhabditis spp. nematode have been shown to be highly pathogenic to insects, with a potential for replacing pesticides to suppress several pests. Insecticidal activity of P. luminescens at different bacterial cell concentrations and its cell-free supernatant were assessed against third-instar larvae and pupae of D. suzukii under laboratory conditions. P. luminescens suspensions had a significant oral and contact toxicity on D. suzukii larvae and pupae, with mortalities up to of 70–100% 10 days after treatment. Cell-free supernatant in the diet also doubled mortality rates of feeding larvae. Our results suggest that P. luminescens may be a promising candidate for biological control of D. suzukii, and its use in integrated pest management (IPM) programs is discussed.
Highlights
Drosophila suzukii (Matsumura) (Diptera Drosophilidae) is an invasive species that threatens soft fruit industries in America and Europe [1,2] through feeding on unripe and undamaged cherry, blueberry, raspberry, grape and strawberry [2,3,4,5,6], causing extensive economic losses [7]
Control approaches based on biological agents are highly recommended to establish effective and sustainable integrated pest management (IPM) programs
All treatments significantly reduced emerged adult numbers at 10 days after application (DAA) compared to the control, with the highest reduction (50.0%) in 3.5 × 108 cells mL−1 treatment (F = 2.13; df = 6; p = 0.0114)
Summary
Drosophila suzukii (Matsumura) (Diptera Drosophilidae) is an invasive species that threatens soft fruit industries in America and Europe [1,2] through feeding on unripe and undamaged cherry, blueberry, raspberry, grape and strawberry [2,3,4,5,6], causing extensive economic losses [7]. Chemical pesticides are the main D. suzukii control methods [8], but their use has to be limited due to the high risk of residues on the fruit, insect resistance development and their negative impact on beneficial insects [9,10,11]. Alternative and more sustainable control strategies are constantly being sought [12]. Biological control agents are expected to play an essential role, being a cost-effective and environmentally safe approach for the management of this pest [8]. Control approaches based on biological agents are highly recommended to establish effective and sustainable integrated pest management (IPM) programs. Several commercially available biological agents including parasitoids [13,14], predators [15,16], nematodes [16,17], entomopathogenic fungi [16,18,19] and bacteria [20] have been evaluated against
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.