Abstract

The diamondback moth Plutella xylostella (Linnaeus, 1758) (Lepidoptera: Plutellidae) is a destructive pest of brassica crops of economic importance that have resistance to a range of insecticides. Indole derivates can exert diverse biological activities, and different effects may be obtained from small differences in their molecular structures. Indole is the parent substance of a large number of synthetic and natural compounds, such as plant and animal hormones. In the present study, we evaluate the insecticidal activity of 20 new synthesized indole derivatives against P. xylostella, and the selectivity of these derivatives against non-target hymenopteran beneficial arthropods: the pollinator Apis mellifera (Linnaeus, 1758) (Hymenoptera: Apidae), and the predators Polybia scutellaris (White, 1841), Polybia sericea (Olivier, 1791) and Polybia rejecta (Fabricius, 1798) (Hymenoptera: Vespidae). Bioassays were performed in the laboratory to determine the lethal and sublethal effects of the compounds on P. xylostella and to examine their selectivity to non-target organisms by topical application and foliar contact. The treatments consisted of two synthesized derivatives (most and least toxic), the positive control (deltamethrin) and the negative control (solvent). The synthesized compound 4e [1-(1H-indol-3-yl)hexan-1-one] showed high toxicity (via topical application and ingestion) and decreased the leaf consumption by P. xylostella, displaying a higher efficiency than the pyrethroid deltamethrin, widely used to control this pest. In addition, the synthesized indole derivatives were selective to the pollinator A. mellifera and the predators P. scutellaris, P. sericea and P. rejecta, none of which were affected by deltamethrin. Our results highlight the promising potential of the synthesized indole derivatives for the generation of new chemical compounds for P. xylostella management.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.