Abstract

Egg formation in terrestrial insects is an absorptive process, accommodated not only by packing proteins and lipids into yolk but also by filling chorions with water. An osmotic swelling of ovarian follicles takes place during oocyte maturation. This study investigated the role of the aquaporin (AQP) water channel in the osmotic uptake of water during oogenesis in the silk moth Bombyx mori Linnaeus, 1758. Using the antibodies that specifically recognize previously characterized AQPs, two water-specific subtypes-AQP-Bom1 and AQP-Bom3-belonging to the Drosophila integral protein (DRIP) and Pyrocoelia rufa integral protein (PRIP) subfamilies of the insect AQP clade, respectively, were identified in the developing ovaries of B. mori. During oocyte growth, Bombyx PRIP was distributed at the oocyte plasma membrane, where it likely plays a role in water uptake and oocyte swelling, and may be responsible for oocyte hydration during fluid absorption by ovarian follicles. During the transition from vitellogenesis to choriogenesis during oocyte maturation, Bombyx DRIP expression became abundant in peripheral yolk granules underlying the oocyte plasma membrane. The restricted DRIP localization was not observed in non-diapause-destined follicles, where DRIP was evenly distributed in medullary yolk granules. There was no difference in PRIP distribution between diapause- and non-diapause-destined follicles. The diapause-destined oocytes encase DRIP protein in the peripheral yolk granules, where DRIP might be inert. This would be reflected in the metabolic arrest associated with diapause after fertilization and egg oviposition.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call