Abstract

The cowpea weevil, Callosobruchus maculatus F. (Coleoptera: Bruchidae), can cause up to 100% yield loss of stored cowpea seeds in a few months in West Africa. Genes expressing toxins delaying insect maturation (MDTs) are available for genetic engineering. A simulation model was used to investigate the possible use of MDTs for managing C. maculatus. Specifically, we studied the effect of transgenic cowpea expressing an MDT, an insecticide, or both, on the evolution of resistance by C. maculatus at constant temperature. Transgenic cowpea expressing only a nonlethal MDT causing 50-100% maturation delay did not control C. maculatus well. Mortality caused by a maturation delay improved the efficacy of transgenic cowpea expressing only a lethal MDT, but significantly reduced the durability of transgenic cowpea Transgenic cowpea expressing only a lethal MDT causing 50% maturation delay and 90% mortality controlled C. maculatus better than one expressing only a nonlethal MDT, but its durability was only 2 yr. We concluded that transgenic cowpea expressing only an MDT has little value for managing C. maculatus. The resistance by C. maculatus to transgenic cowpea expressing only an insecticide rapidly evolved. Stacking a gene expressing a nonlethal MDT and a gene expressing an insecticide in transgenic cowpea did not significantly improve the durability of an insecticide, but stacking a gene expressing a lethal MDT and a gene expressing an insecticide in transgenic cowpea significantly improved the durability of an insecticide and an MDT. We also discussed this approach within the idea of using transgenic RNAi in pest control strategies.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call