Abstract

Exploiting the principles of biological control of crop pests is an important management strategy for the resource-poor smallholder farmers of the tropics. The effects of nine hedgerow species on the abundance of major insect pests of beans and maize, and predatory/parasitic-arthropods were monitored over two cropping seasons and the intervening dry period. The tree/shrub species evaluated were Gliricidia sepium, Grevillea robusta, Senna siamea, Senna spectabilis, Flemingea congesta, Croton megalocarpus, Morus alba, Calliandra calothyrsus and Lantana camara. Arthropod abundance was monitored through counts of infested plants and using yellow pan and pitfall traps. Beanfly (Ophiomyia spp.) infestation was significantly higher in the presence of hedgerows (35%) than in their absence (25%). Hedgerows did not influence aphid (Aphis fabae) infestation of beans. In contrast, maize associated with hedgerows experienced significantly lower stalk borer (Busseola fusca and Chilo spp.) and aphid (Rhophalosiphum maidis) infestations than pure maize, the margin of difference being 13% and 11% respectively for the two pests. Ladybird beetles closely followed their prey, aphids, with significantly higher catches in sole cropped-plots than in hedgerow-plots and away from hedgerows. Activity of wasps was significantly greater close to hedgerows than away from them. Spider catches during maize season were 77% greater in the presence of hedgerows than in their absence, but catches during other seasons were similar between the two cropping systems. Differences among hedgerow species were not significant for most of the arthropods monitored, except that beanfly infestation was greater with Gliricidia hedgerows. The study indicates that the effect of hedgerows on pest infestations of crops and their role as refugia for predators cannot be generalized but depends on the specific arthropods.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.