Abstract

AbstractInvertebrate herbivore outbreaks have important impacts on system biogeochemical cycling, but these effects have been poorly documented in African savanna ecosystems. In semi‐arid African savannas, outbreaks of the lepidopteran Imbrasia belina (mopane worm) affect discrete patches of the dominant Colophospermum mopane trees; larvae may completely defoliate trees for up to six weeks during each of the early and late growing seasons. We studied the impact of mopane worm outbreaks on the availability of nitrogen (N), phosphorus (P), and potassium (K) within mopane savanna by quantifying major nutrient pools in defoliated and non‐defoliated savanna patches, including leaves, leaf litter, worm frass, and the soil beneath trees. Within an outbreak area, approximately 44 percent of trees were infested, supporting ~29,000 worms/ha, leading to ~640 kg/ha dry weight frass deposition at 1.4 g of frass/day‐individual (fourth or fifth instar), compared with an average 1645 kg/ha dry weight of leaf on trees most of which should be deposited by litterfall at the end of the growing season. Frass had twofold higher P, 10 percent higher K, but equivalent N content than litter. Taking frass and litter deposition together, the N, P, and K contents added due to the outbreak event at our study site were 0.88, 5.8, and 2.8 times those measured in non‐outbreak patches, a pattern which was reflected in the nutrient contents of soil surfaces beneath defoliated trees. Invertebrate herbivory appears to be an important driver for mopane savanna but has been largely neglected.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call