Abstract
The measurement of insect radar cross section (RCS) is a prerequisite for the studies such as the quantitative estimation of insect population density and the identification of insects using entomological radar. In this article, we established a multiband polarimetric RCS measurement system in the microwave anechoic chamber. The targets’ range profile at different frequencies can be obtained based on the step frequency continuous wave, and meanwhile the clutter elimination and polarimetric calibration were applied to reduce the measuring error. The multifrequency (X-/Ku-/Ka-bands) polarimetric RCSs of 169 insects belonging to 21 species were measured and reported, which is the first time to systematically present the multifrequency polarimetric RCSs of insects. The mass of all specimens range from 25.6 to 964 mg, and their ventral-aspect RCSs range from −57.47 to −32.17 dBsm at X-band, from −48.27 to −33.87 dBsm at Ku-band and from −69.76 to −36.40 dBsm at Ka-band. For small insects less than 300 mg, the HH polarization RCS increases rapidly with frequency at X-band and fluctuates with the frequency at Ku-band, while the VV polarization RCS increases monotonically with frequency at X- and Ku-band. For larger insects, the HH polarization RCS decreased slowly with frequency at X-band and fluctuates with the frequency at Ku-band, while the VV polarization RCS increases with the frequency, then reaches the maximum, finally fluctuates with the frequency. At Ka-band, the measured polarization RCS versus frequency curves are smooth and all show similar variation. The measurement results verify the effectiveness and accuracy of the established system.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Geoscience and Remote Sensing
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.