Abstract

Insect-mediated damage was examined on 756 specimens of three broadleaved conifers Podozamites, Lindleycladus and Liaoningocladus, originating from five mid-Mesozoic localities in Northeastern China. These localities are the Late Triassic Yangcaogou Fm. (T3, ca. 205Ma), the latest Middle Jurassic Jiulongshan Fm. (J2, 165Ma), and the mid Early Cretaceous Yixian Fm. (K1, 125Ma). Plant hosts from these three time intervals harbor five functional feeding groups (FFGs) of herbivores and 23 distinctive damage types (DTs), categorized using the widely applied DT system. The DTs were classified into the five FFGs of external foliage feeding (6 DTs), piercing and sucking (5 DTs), oviposition (3 DTs), galling (8 DTs) and leaf mining (1 DT). Damage-type richness and abundance was established for each FFG, encompassing from 10 to 16 DTs for each of the three time intervals examined. For this 80 million-year-long interval, foliar herbivory on broadleaved conifers was transformed from early predominance of external foliage feeding (T3), later replaced by an emphasis on piercing and sucking (J2), followed by bimodal expansion of endophytic interactions from oviposition and leaf mining (K1). This trajectory of herbivore succession indicates that, from T3 to K1, plant–insect associations were transformed from earlier reliance on a greater number of exophytic modes of herbivory to a later, increased variety in endophytic consumption. The transformation also was demonstrated by finer-grained partitioning of food resources and specialization on particular host-plant tissue types. This subdivision of tissue types likely promoted greater dietary saturation of tissue space by functional feeding groups. Possible explanations for these shifts in herbivory include ecological causes, long-term environmental changes, or both. Ecological factors, such as (i), evolution of a more differentiated plant-host spectrum available for consumption; (ii), long-term changes in plant physiognomy and deployment of antiherbivore defenses; (iii), change in herbivore partitioning of plant-host tissues; and (iv), emergence of the parasitoid guild for efficient regulation of insect herbivores. Long-term environmental variables may be linked to these shifts in insect herbivory style.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.