Abstract

In this article we recall a remarkable result stated as "For a fixed ?, 0 < ? ? 1, the set of all bounded statistically convergent sequences of order ? is a closed linear subspace of m (m is the set of all bounded real sequences endowed with the sup norm)" by Bhunia et al. (Acta Math. Hungar. 130 (1-2) (2012), 153-161) and to develop the objective of this perception we demonstrate that the set of all bounded statistically convergent sequences of order ? may not form a closed subspace in other sequence spaces. Also we determine two different sequence spaces in which the set of all statistically convergent sequences of order ? (irrespective of boundedness) forms a closed set.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.