Abstract

We propose a non-destructive, all-optical technique to imprint embedded lateral superlattices near semiconductor heterostructures by illuminating the samples with a stable interference pattern generated by a phase diffraction grating. We demonstrate the technique on an ultrahigh mobility GaAs/AlGaAs sample with a Si δ-doping by inducing a persistent charge redistribution at cryogenic temperatures in the doping layer containing DX-centers. Weiss commensurability oscillations in the magnetoresistance of the light-induced superlattice are observed and analyzed to obtain its characteristics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.