Abstract

Diffraction gratings are transversally inscribed in the bulk of monolithic crystalline silicon with infrared nanosecond laser pulses. Nanoscale material analyses of the modifications composing the gratings show that they rely on laser-induced stress associated with a positive refractive index change as confirmed with phase-shift interferometry. Characterizations of the optical properties of the gratings, including the diffraction angles and the efficiency of the different orders, are carried out. The refractive index change obtained from these measurements is in good agreement with the phase-shift measurements. Finally, we show that the grating diffraction efficiency depends strongly on the laser writing speed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.