Abstract

The authors present fabrication and electrical measurements of InSb nanowire field-effect transistors (FETs) and quantum dots. The devices are made on a SiO2-capped Si substrate from InSb segments of InAs/InSb heterostructured nanowires, which are grown by metalorganic vapor phase epitaxy. For the FETs, both single- and dual-gate devices are fabricated. The Si substrate is employed as the back gate in both the single- and dual-gate devices, while a top metal gate is employed as a second gate in the dual-gate devices. This top gate is made either as a global gate or as a local finger gate by using a thin HfO2 layer grown by atomic layer deposition as a gate dielectric. The measurements reveal that the fabricated devices show the desired transistor characteristics. The measurements also demonstrate the possibility of realizing ambipolar transistors using InSb nanowires. For InSb nanowire quantum dots, both contact-induced Schottky-barrier-defined devices and top-finger-gate-defined devices are fabricated, and the Si substrate is used as a gate to tune the electron number in the quantum dots. The electrical measurements of these fabricated quantum-dot devices show the Coulomb-blockade effect at 4.2 K. A Fabry-Perot-like interference effect is also observed in a Schottky-barrier-defined quantum device. The authors also discuss in a comparative way, the results of measurements for the InSb nanowire devices made by different fabrication technologies employed in this study.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.