Abstract
Mid-infrared (MIR) Si-based optoelectronics has wide potential applications, and its design requires simultaneous consideration of device performance optimization and the feasibility of heterogeneous integration. The emerging interest in all-dielectric metasurfaces for optoelectronic applications stems from their exceptional ability to manipulate light. In this Letter, we present our research on an InSb all-dielectric metasurface designed to achieve ultrahigh absorptivity within the 5-5.5 µm wavelength range. By integrating an InSb nanodisk array layer on a Si platform using wafer bonding and heteroepitaxial growth, we demonstrate three kinds of metasurface with high absorptivity of 98.36%, 99.28%, and 99.18%. The enhanced absorption is mainly contributed by the Kerker effect and the anapole state and the peak, with the added flexibility of tuning both the peak and bandwidth of absorption by altering the metasurface parameters. Our findings provide an alternative scheme to develop high-performance detectors and absorbers for MIR silicon photonics.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.