Abstract

ABSTRACTInSb has served as an important mid-wave IR (λ=3−5μm) detector material for several decades. In this presentation, we will briefly review General Electric's InSb Charge Injection Device technology. Emphasis will be placed on device performance as a function of material parameters. A new InSb materials technology utilizing liquid phase epitaxy will be described. This epitaxial growth technology improves InSb material parameters and increases minority carrier lifetimes by more than two orders of magnitude to near the Auger limit. Comparisons will be made between available bulk material parameters and that of the epitaxial material.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.