Abstract

Abstract. Rock glaciers are a prominent component of many alpine landscapes and constitute a significant water resource in some arid mountain environments. Here, we employ satellite-based interferometric synthetic aperture radar (InSAR) between 2016 and 2019 to identify and monitor active and transitional rock glaciers in the Uinta Mountains (Utah, USA), an area of ∼3000 km2. We used mean velocity maps to generate an inventory for the Uinta Mountains containing 205 active and transitional rock glaciers. These rock glaciers are 11.9 ha in area on average and located at a mean elevation of 3308 m, where mean annual air temperature is −0.25 ∘C. The mean downslope velocity for the inventory is 1.94 cm yr−1, but individual rock glaciers have velocities ranging from 0.35 to 6.04 cm yr−1. To search for relationships with climatic drivers, we investigated the time-dependent motion of three rock glaciers. We found that rock glacier motion has a significant seasonal component, with rates that are more than 5 times faster during the late summer compared to the rest of the year. Rock glacier velocities also appear to be correlated with the snow water equivalent of the previous winter's snowpack. Our results demonstrate the ability to use satellite InSAR to monitor rock glaciers over large areas and provide insight into the environmental factors that control their kinematics.

Highlights

  • Rock glaciers are bodies of ice and rock debris that creep downslope due to deformation of their internal ice–rock mixture (Fig. 1) (Wahrhaftig and Cox, 1959; Barsch, 1996)

  • The Uintas extend from elevations of ∼ 2200 to > 4100 m, 77.1 % of rock glaciers are found in a narrow elevation band between 3100 and 3500 m

  • The comparison between our active and transitional rock glacier inventory and the inactive rock glaciers identified by the previous inventory (Munroe, 2018) demonstrates the sensitivity of Uinta rock glaciers to temperature

Read more

Summary

Introduction

Rock glaciers are bodies of ice and rock debris that creep downslope due to deformation of their internal ice–rock mixture (Fig. 1) (Wahrhaftig and Cox, 1959; Barsch, 1996) They play an important role in alpine hydrology and landscape evolution, principally through the release of seasonal meltwater and the continuous downslope transport of coarse material (Azócar and Brenning, 2010; Frauenfelder and Kääb, 2000). They constitute a significant water resource in arid regions (Schaffer et al, 2019), and their importance as a water source is likely to increase with ongoing climate change (Jones et al, 2018a). As with ice glaciers (e.g., Bartholomew et al, 2010; Iverson, 2010; Minchew and Meyer, 2020), tectonic faults (e.g., Bürgmann, 2018) and landslides (e.g., Bayer et al, 2018; Handwerger et al, 2019), liquid water, and pore-water pressure are important drivers of short-term rock glacier

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call