Abstract

Landslides, a major natural geohazard, obstruct municipal constructions and may destroy villages and towns, at worst causing significant casualties and economic losses. Interferometric Synthetic Aperture Radar (InSAR) technique offers distinct advantages on landslide detection and monitoring. In this paper, a more systematic workflow is designed for InSAR study of landslides, in terms of three levels: (i) early detection on regional scale, (ii) three-dimensional (3D) surface displacement rates estimation on detailed scale, and (iii) time series analysis on long-term temporal scale. The proposed workflow is applied for landslide research on the Xiaojiang River Basin, China, using ascending and descending Sentinel-1 images acquired from March 2017 to May 2019. First, the landslide inventory has been mapped and updated using InSAR stacking method, supporting geohazard prevention on a regional scale. A total of 22 active landslides are identified, ranging from medium to super large scale. Compared with the existing inventory, three unrecorded landslides are newly detected by our approach, and five recorded landslides are detected significant expansion of their boundaries. Then, specific to a detected landslide, Baobao landslide, a Total Least Squares–Kalman Filter-based approach is presented. Two outcomes are provided for further spatial-temporal pattern analysis: 3D displacement rates, providing an intuitive insight on the spatial characteristics and sliding direction of landslide, which are analyzed to deep the understanding of its kinematic mechanism, and long-term time series, which contribute to deduce the dynamic evolution of landslide, presenting benefits in landslide forecasting.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.