Abstract

AbstractThe present study assesses the added value of high‐resolution maps of precipitable water vapor, computed from synthetic aperture radar interferograms , in short‐range atmospheric predictability. A large set of images, in different weather conditions, produced by Sentinel‐1A in a very well monitored region near the Appalachian Mountains, are assimilated by the Weather Research and Forecast (WRF) model. Results covering more than 2 years of operation indicate a consistent improvement of the water vapor predictability up to a range comparable with the transit time of the air mass in the synthetic aperture radar interferograms footprint, an overall improvement in the forecast of different precipitation events, and better representation of the spatial distribution of precipitation. This result highlights the significant potential for increasing short‐range atmospheric predictability from improved high‐resolution precipitable water vapor initial data, which can be obtained from new high‐resolution all‐weather microwave sensors.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.