Abstract

AbstractDuring the past three decades, thousands of sinkholes were formed along the Dead Sea (DS) shorelines in Israel and Jordan, due to dissolution of subsurface salt by undersaturated groundwater. The sinkholes are associated with gradual subsidence preceding their collapse by periods ranging from a few days to almost 5 years. To determine the factors controlling this precursory subsidence, we examine tens of subsidence‐sinkhole sequences along the DS shorelines in Israel. The duration and magnitude of the precursory subsidence are determined by Interferometric Synthetic Aperture Radar (InSAR) measurements and simulated by viscoelastic damage rheology models. Longer periods of precursory subsidence are found in the cemented alluvial fans and in simulations of higher‐viscosity sediments. While surface subsidence accelerates during the precursory period, the widths of the subsiding areas remain uniform, suggesting that during this period upward propagation of damage from the subsurface cavity is not accompanied by upward migration of the actual cavity. Our observations and simulations are used to constrain the viscosity of the sediments along the DS and to reduce sinkhole hazards by assessing the precursory times of future sinkholes in the different sedimentary environments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.