Abstract

Earthquakes can directly trigger multiple simultaneous slope failures in mountainous regions. Among these slope failures, flow-like landslides with high velocities and long run-outs can result in damage that is more destructive than other types of landslides. Timely and accurate recognition of the locations and magnitudes of flow-like landslides is essential for post-disaster relief. Synthetic aperture radar (SAR) sensors are suitable for deformation monitoring because of their capability to operate at day or night and in all weather conditions. Interferometric synthetic aperture radar (InSAR) is an advanced technique that extracts three-dimensional terrain and changes information from the radar images at a regional scale. The focus of this study is the Donghekou landslide-debris flow that was triggered by the 2008 Wenchuan earthquake. ALOS/PALSAR remote satellite images were interpreted by InSAR to generate digital surface elevation models. A comparison of data from a typical InSAR configuration with field survey data proves that the former is an effective method for rapidly detecting flow-like landslides in a mountainous area. The comparison also shows that the accuracy of the results is closely related to the correlation between the satellite radar images used, and further that the study accuracy would improve with the inclusion of better correlation. In this way, representations of pre- and post-landslide terrains could be generated for use in numerical simulations. The InSAR method has particular significance for areas without terrain data prior to slope failure, and can provide basic data for landslide hazard assessments.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call