Abstract

Abstract. Temporal analysis of deformations Time Series (TS) provides detailed information of various natural and humanmade displacements. Interferometric Synthetic Aperture Radar (InSAR) generates millimetre-scale products, indicating the chronicle behaviour of detected targets via TS products. Deep Learning (DL) can handle a massive load of InSAR TS to categorize significant movements from non-moving targets. To this end, we employed a supervised Convolutional Neural Network (CNN) model to distinguish five deformations trends, including Stable, Linear, Quadratic, Bilinear, and Phase Unwrapping Error (PUE). Considering several arguments in a CNN model, we trained numerous combinations to explore the most accurate combination from 5000 samples extracted from a Persistent Scatterer Interferometry (PSI) technique and Sentinel-1 images over the Granada region, Spain. The model overall accuracy exceeds 92%. Deformations of three cases of landslides were also detected over the same area, including the Cortijo de Lorenzo, El Arrecife, and Rules Viaduct areas.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call