Abstract

On 6 April 2009, a moderate earthquake (Mw = 6.3; Ml = 5.8) struck the Abruzzo region in central Italy, causing more than 300 fatalities and heavy damage to L'Aquila and surrounding villages. Coseismic surface effects have been thoroughly documented by timely field surveys as well as by remote sensing analyses of satellite images. The outstanding quality of geological, seismological, geodetic, and interferometric synthetic aperture radar (InSAR) information arguably represents the best ever data set made available immediately after a moderate seismic event. Based on this data set, we aim at testing the capability of coupled geological and InSAR data to map surface faulting patterns associated with moderate earthquakes. Coseismic ground ruptures have been mapped at a scale of 1:500 in the whole epicentral area. Traces of surface ruptures have been inferred from linear phase discontinuities identified in the interferogram. A very good agreement between the two methods resulted in the characterization of the main surface rupture along the Paganica fault. The same approach applied to ground ruptures hypothesized along other capable fault segments provided more questionable results. Thus, the combined field and InSAR approach appeared useful for detecting continuous surface ruptures exceeding 1 km in length and showing displacements greater than a few centimeters. These are the typical faulting parameters for moderate earthquakes (6.0 < Mw < 6.5) in central Apennines. For continuous ground cracks shorter than a few hundred meters and/or that show displacements smaller than 1–2 cm, the described approach may be less helpful, most probably due to the limited resolution of the data.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.